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vs gap-distance curve is not affected greatly by

holes in the endplate and center conductor;

thus, the compensation would not be affected markedly

by these modifications.

RESULTS

Temperature Compensation

A cavity was constructed with the following dimen-

sions: b= O.250, a= O.840, L~= 0.675, and L,= 7.025 (all

dimensions in inches). The cavity had a resonant fre-

quency of 403.5 mc, 0.2 per cent higher than (13a) would

indicate, and an unloaded Q of 2280.

The temperature compensation of the cavity was

measured by placing it in a constant-temperature bath

and measuring its resonant frequency as a function of

temperature. The cavity temperature was varied from

– 32°C to 53”C, and the temperature coefficient of the

cavity was found to be 2.62 parts/million/CO under-

compensation; i.e., the cavity frequency was lowered

as the temperature was raised. This was a rather

surprising result since an uncompensated invar cav-

ity would be expected to exhibit a temperature coeffi-

cient of 1 X 10–e/CO undercompensation. The high co-

efficient indicated one of two things: either 1) the invar

center conductor had a higher expansion coefficient

than advertised, or 2) some unexpected effect (such as

eccentricity of the center conductor, for example) was

present. Whatever the cause of the undercompensation,

the gap length had to be shortened to compensate

for it. This was done in steps until a final gap length

of 0.376 inch produced a temperature coefficient of

0.25 X 10–G/CO overcompensation, which was corlsid-

ered satisfactory. Fig. 9 shows the effects of the various

gap lengths on the compensation of the cavity.

Transient Response

During the temperature tests some data on the tran-

sient response of the cavity were obtained. The cavity

experienced a rise in temperature when it was inserted

into the temperature bath. The response of the cavity

showed two time constants, one associated with the

transfer of heat to the outer conductor and the other as-

sociated with the transfer of heat to the center conduc-

tor. These time constants were measured to be 1.1 min-

ute and 29 minutes, respectively. These results agree

fairly well with the response determined analytically.

As shown in Fig. 10, the cavity reached thermal equi-

librium in about 2 hours after it experienced a change in

temperature.

It should be mentioned that these iigures for the

transient response are not those which WOUIC1 be experi-

enced in actual use. When employed in atmospheric

soundings, the rate of transfer of heat from the air to the

cavity would be very slow so that it would be expected

that the cavity would have essentially the same tem-

perature throughout the center post andl the body at a

given time. Hence, the temperature compensation tech-

niques described in this paper would be effective.

A Graphical Method for Measuring Dielectric Cmw

stants at Microwave Frequencies*
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Summary—Thk paper describes a graphical method for measur-

ing the real and imaginary parts of the dielectric constant e/q= d —jd’

of materials at microwave frequencies. The method is based on the

network approach to dielectric measurements proposed by Oliner

and Alt schuler in which the dielectric sample fills a section of trans-

mission life or waveguide. In contrast to their method, the network
representing the dielectric sample is analyzed in terms of the bilinear

transformation

ar+b
r’=—. ad- bc =4.

Cr+d’

The analysis proceeds from the geometric properties of the image
circle in the r plane obtained by terminating the output line in a
calibrated sliding short.
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The technique described retains the desirable features of the

network approach but avoids the necessity of measuring both scatter-

ing coefficients. As a result the procedure is more dkect and, in the

case of the TEM configuration, leads to an entire] y graphical solution

in which the complex dielectric constant can be read from a Smith

chart overlay.

INTRODUCTION

T

HERE are many techniques for making dielectric

measurements at microwave frequencies. ~ One of

the more interesting methods proposed in recent

years is that due to Oliner and Altschuler,2 in which the

1 A. von Hippel, ed., “Dielectric Materials and Applications, ”
J. Wiley and Sons, Inc., New York, N. Y., ch. 2; 1954.

2 A. Oliner and H. Altschuler, “Methods of measuring dielectric
constants based upon a microwave network viewpoint, ” ~. A@@.
P?sys.,vol. 26, pp. 214-219; February, 1955.
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dielectric sample filling a section of waveguide is repre-

sented by a two-port microwave network as illustrated

in Fig. 1. In their method the scattering matrix of the

network is determined at reference planes T1 and Ta by

Deschamps3 procedure or, when the network can be re-

garded as lossless, by alternative so-called precision

techniques. The complex relative dielectric constant

e/ Eo=E1—Je “ “ is then obtained from either

c/cO = (V/ VO)2 (TEM modes) (la)

or

(r/ ~o)z + (xOQ/xc)2(H modes),
e/eo = (lb)

1 + (koQ/kc) 2

where the wave admittance Y in the dielectric relative

to the wave admittance of the empty guide YO is given

in terms of the scattering coefficients by

(2)

and ho~ and h. refer to the guide wavelength and the

cutoff wavelength, respectively, in the air-filled guide.

‘3=EZZEE
I I I I

Fig. 1.—Dielectric sample in a waveguide and its equivalent circuit.

Oliner and Altschuler point out that the introduction

of the network point of view to dielectric measurements

results in two major advantages over earlier methods,

First, it becomes possible to employ precision techniques

in the determination of the network parameters. For

example, in Deschamps’ geometrical method, the image

circle, representing the locus of points in the input re-

flection coefficient plane as a sliding short is moved in

the output waveguide, is determined by graphical

averaging. Therefore, the center of the image circle and

its radius, as well as quantities derived from them, can

be determined to a higher degree of precision than that

of a single data point. The second feature of the network

method which can be exploited to advantage in dielec-

tric measurements concerns the concept of invariance.

3 G. A. Deschamps, c~Determination of reflection coefficients and
insertion loss of a waveguide junction, ” 1. A@l. Phys., vol. 24,
pp. 1046–1050 ; August, 1953.

Briefly stated, invariance in the present case refers to

the method of microwave network representation or

measurement which calls for a minimum number of

physical length measurements. Thus, for the configura-

tion illustrated in Fig. 1 it is possible to take advantage

of the known symmetry of the network to reduce to one

the number of required distance measurements. The

single measurement required may be either the length of

the sample, d (location invariant) or the location of the

one of the sample faces, T1 or TZ (length invariant). The

desirability of employing a distance invariant method

lies in the fact that errors arising from physical distance

measurements are generally greater than those resulting

from the electrical distance measurements, assuming

that corrections have been made for errors in the loca-

tion of the voltage minimum caused by spurious dis-

continuities if they exist.

The purpose of the present paper is to describe a

technique for measuring dielectric constants which re-

tains the desirable features of the network approach but

which can be accomplished more directly and with a

minimum of computation. In the case of the TEM con-

figuration, the dielectric constant can be obtained by a

purely graphical procedure in which the desired complex

constant is read directly from a Smith Chart.

THEORY

The dielectric-filled section of line or waveguide can

be represented at reference planes T, and T, by the

(ABCD) circuit parameters which relate the input and

output voltages and currents, as defined in Fig. 1, by

the matrix equation

(3)

where AD —BC= 1. If w-e take

21 = vl/11, 22 == v2/Ij, (4)

then a bilinear relationship is obtained between the im-

pedances ZI and 22:

AZZ + B
ZI =

CZS+D”
(5)

This transformation has often been used in analyzing

the properties of linear two-port networks. However, it

will be more convenient in the present case to consider

the network representing the dielectric sample in terms

of a bilinear transformation in the reflection coefficient

or I’ plane. Thus, if the input and output reflection co-

efficients are defined, respectively, by

YIJ – YI Y(I – Y2
rl = rz =

YO+Y1’ YO+Y2’
(6)

it can be shown that

aF2 + b
r, =

Crz+d’
(7)
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where

a= A–BYo– C/ Yo+D,

b= A+ BYo– C/ Yo– D,

C= A–BYo+C/YO– D,

d= A+ BYo+C/YO+D. (8)

Reciprocity is assured if ad – bc = 4. If the network is

symmetrical, as in the present case, then b = —c. Eq.

(7) is sometimes called the direct transformation to dis-

tinguish it from the inverse transformation

–dI’, + b
ra=– (9)

Grl — a

The matrix composed of the (abed) parameters might

be termed the reflection matrix of the network. Al-

though the transformation (7) has been used by MathisJ

and also by Bolinder,5 employing a different normaliza-

tion, it has not enj eyed widespread use as a tool in net-

work analysis. As would be expected, the reflection

matrix bears a close connection to the scattering matrix.

It can be shown that, in general,

An obvious application of (10) is suggested in the Ap-

pendix. The components of the reflection matrix trans-

form in a manner very similar to the manner in which

the scattering coefficients transform as a result of a shift

in reference planes. Referring to Fig. 1, the reflection

matrix at reference planes T’ and T is given by

[; :1=[’::2[::1[’7:J ‘“)
where @l= 2n-zl/AOg, rjz = 2TlZ/hOQ, and the primed Co-

efficients are defined by ,

a’r + b’
rl =

c’r + d’ “
(12)

Returning to the problem at hand the (A B CD) matrix

of the dielectric-filled section at reference planes T1 and

TZ is

r r sinh -yd
AB cosh yd

—

1 1-1 Y

CD 1
(13)

Y sinh yd cosh ~d

from which (8) yields,

4 H. F. Mathis, “Some properties of image circles, ” IRE TRANS.
ON MICROWAVE THEORY AND TECHiWQU~S, vol. MTT-4, pp. 48–SO;
January, 1956.

5 E. F, Bolinder, “Impedance and Power Transformations by the
Isometric Circle Method and Non-Euclidean Hyperbolic Geometry,
M.I.T. Res. Lab. of Electronics, Cambridge, Mass., Tech. Rept.
312; June 14, 1957.

a = 2 cosh ~d — (Y/Y. + Yo/ Y) sinh yd,

b = – G = – (Y/Ye– Uo/Y)sinhyd,

d = 2 cosh Td + (Y/ YO + Yo/ Y) sinh ~d, (14)

where y = a +j~ is the propagation constant in the di-

electric. A purely algebraic relation between Y/ Y. and

the (abed) parameters can be obtained by forming

a—d 1 + (Y/ Yo)2
r~=—

2C = F– (Y/ 1’0) ‘ “
(15)

This expression is entirely equivalent to (2!) invc)lving

the scattering coefficients. The merit of the reflection

parameter representation lies in the simplicity of (15),

as well as in the facility it provides in the geometric in-

terpretation of the problem. Thus, it will be shown that

rE can be determined through a series of simpk geo-

metric constructions based on the image circle diagram.

The desired dielectric constant then follows from (la)

or (lb).

In the interest of generality we will proceed from the

initial assumption that reference planes T and T’ are

located arbitrarily with respect to the sample. Eq. (12)

is first rewritten in the form4

r,=a611’12-bd

cc] I’lz-dd -E+][fifi-]rl (o’)

where the bar over a quantity designates the complex

conjugate and the primes have been omitted. One can

determine the center of the image circle and its radius

from (16) by inspection. Thus, when I T \ =1, corre-

sponding to a reactive termination in the output wave-

guide, the first term in (16) will be a complex constant

and the magnitude of the second term will be a ccmstant

for all values of reactance. Referring to Fig. 2, the center

of the image circle in the 17’ plane is

a~ — b~
rc, = (17)

Cc — dd

and the radius is

‘=lct~ddl “
(18)

There are three points in the reflection plane which

are of special interest. The iconocenter I’o, = S11 = b/d is

the map or image of r = O in the I“ plane. There are a

number of geometric constructions which can be used to

obtain the iconocenter once the image circle, and its

center are known.~ $-8 All of these methods make use of

s J.. E. Storer, L. S. Sheingold, and S, Stein, “A simple graphical
analysls of a two-port waveguide junction, ” PROC. IRE, vol. 41,
pp. 1004–1013 ; August, 1953.

~ F. L. Wentworth and D. R. Barthel, “A simplified calibration of
two-port transmission line devices, ” IRE TRANS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-4, pp. 173–175; July, 1956.

s G. A. Deschamps, “A variant in the measurement of two-port
junctions,” IRE TRANS. ON MrcRowAvE ‘&EXIRy ~iND TECHNIQUES,
vol. MTT-5, pp. 1S9–161; April, 1957.
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D’

e,.

1’

Fig. 2—Construction of ~D, and l_r,, and determination
Of refereflCe angk 6A,.

a calibrated short behind the network, and all but the

last method referenced depend on a knowledge of the

wavelength in the output waveguide. The other two

points of interest in the reflection plane are rD, = U/c

and 17r, = — d/c. These points have a special significance

in the theory of the bilinear transformation and can be

shown to mark the center of the isometric circles for the

direct and inverse transformations, respectively.’

GRAPHICAL ANALYSIS

Once I’o and I’c, are determined, 17~, can be readily

constructed by inverting I’ot with respect to the image

circle as illustrated in Fig. 2. The proof of this statement

is contained in

(17w – Tct) (r. – T-c?) = R’, (19)

which follows from (17), (18), and the condition,

ad — bc = 4. The construction of the point 171, follows in

an analogous way, although in contrast to the previous

case, the angle of 17r, will depend on the choice of the

output reference plane T. It is convenient at this point

to locate T symmetrically with respect to T’ so that

11= 12. Assuming for the moment that T has been so

located, the symmetry of the network representing the

dielectric then guarantees that b = – c, and I’r, can be

determined graphically by constructing the reciprocal

of I’o,. This construction is also illustrated in Fig. 2. It
is interesting to note that 171) is also the inverse with re-

spect to the unit circle of rc = — t/~, which is the map

in the output I’ plane of the center of the image circle,

I’c,, via the inverse transformation (9).

g E. F. Bolinder, “Impedance and polarization-ratio transforma-
tions by a graphical method using the isometric circles, ‘J IRE TRANS.
ON MICROWAVE THEOIW AND TECHNIQUES, vol. MTT-4, pp. 176–180;
T,, IT7 10<6

The location of T is accomplished by noting that when

b = –c, the point A = – 1 maps into A‘ at

1 + rDI
rA, =

1 + rlJ
(20)

The reference point A‘ on the image circle is determined

by the angle 6A,= arg rA,, which can be constructed from

rD? and I’r, as shown in Fig. 2. Thus, in order to guar-

antee symmetry one locates T at that position of the

short in the output waveguide which establishes a volt-

age minimum at a distance 1= (Ir-fl~~)AoO/47r from T’

toward the generator in the input waveguide. It should

be noted that this procedure establishes T only to within

a multiple of half a wavelength. However, an approxi-

mate knowledge of the location of the sample suffices to

remove any ambiguity.

At this point it is desirable to distinguish between the

location invariant and the length invariant procedures.

In the location invariant procedure, T’ is located at an

arbitrary point in the input waveguide, and T is deter-

mined from symmetry considerations as described

above. The distance to the sample faces is calculated

from 11=12= (W –d)/2, where w and d are defined in

Fig. 1 and are assumed to be known. It then remains to

transform rDr and rzl to reference planes Tl and T2 at

the sample faces. If rD? and 17~7 denote the isometric

centers relative to planes T’ and T, and rD and 17r the

corresponding quantities relative to planes T1 and T2,

then it follows from (11) that

rD = e2j+pD?, rr = e–%$rI,, (21)

where ~ = (w — d) T/A~. The transformation of reference

planes and the construction of rE, which is the average

of 17 and r~, is apparent from Fig. 3. In the case of a

TEM structure, the desired dielectric constant can be

read directly from a Smith Chart overlay, in view of

(la) and (15), by constructing the point

6/60 — 1
rF ~ – l/r~ = (22)

6/60 + 1

This construction is also shown in Fig. 3.

In the length invariant procedure one makes the ini-

tial assumption that the front face of the sample can be

located accurately by physical means, thus making

T’= T1. This amounts to a trivial distance determina-

tion, which, in rectangular waveguides, can be readily ac-

complished by mounting the sample in a shorting switch.

Since the analysis proceeds from the assumption of sym-

metry, no distance measurement is required in the length

invariant case and the actual location of reference plane

T is of no interest. The points rE and rF are derived

directly from rD) and 17r as determined in Fig. 2 without

shifting reference planes.

When the loss tangent of the dielectric is relatively

small, the graphical method will give rather poor per-
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Fig. 3—Shift of reference planes and construction of I’r,

centage accuracy in the determination of e”. In this

case it is advisable to determine e“ independently. This

can be done most simply by using the already deter-

mined image circle to calculate the intrinsic insertion

loss of the dielectric.lo The necessary formulas are listed

below for the convenience of the reader. If p = ] 17c I is

the distance of the center of the image circle from the

origin of the reflection plane, it can be shown that

[

V’(1 +R)’ –p’+ /(1 –R)’ – p’
2ad = In 1 (23)

ti(l+R)’ -p’- <( R) R_p_p’ “

Knowing e’, the desired e” is then obtained from either

‘“= 2(3’ti’1+(3’’’TEMm0des)’24)
where k is the free-space wavelength or

cfAog <[1 + (Aog/x.) 2]4 — (xog/ho) 2
c“ s — (H modes), (25)

%- 1 + (ko,/x.) 2

10 K. Tomiyasu, “Intrinsic insertion loss of a mismatched net-
work, ” IRE TRANS. ON MICROWAVE THEORY AND TECHNIQUES. vol.
MTT-3, pp. 40-44; January, 1955.

if

1
e“ << e’ – -

1 + (A./xog) 2
(26)

AI’PENDIX

It is well known that repeated bilinear transforma-

tions can be expressed in terms of a matrix product.

Thus, if n linear networks are connected in cascade as

shown in Fig. 4, the reflection matrix of the combination

is given by

[

2.–la ‘m–lb

2.–1C 2.–id 1

I I

Fig. 4—Cascade connection of linear, bilateral two-port networks.

The factor of 2n-’ guarantees that ad – bc = 4 if aid; – b;c;

=4, ;=1,2,3, ..., n. The problem of determining the

scattering matrix of a cascade connection of networks is,

therefore, reduced to a systematic and relatively direct

procedure through the use of (27) and I(10). In this ap-

plication the reflection matrix bears a close resemblance

to the transmission or T matrix,ll as might have been

anticipated from

[

a/2 —c/2
T=

–b/2 1d/2 “
(28)

11 C. G. Montgomery, R. H. Dicke, and E. M. Purcell, ‘principles

of Microwave Circuits, ” M. I .T. Rad. Lab. Ser., McGraw-Hill Book
Co., Inc., New York, N. Y., vol. 8, p. 150; 1948.


