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quency vs gap-distance curve is not affected greatly by
boring holes in the endplate and center conductor;
thus, the compensation would not be affected markedly
by these modifications.

REsuLTS
Temperature Compensation

A cavity was constructed with the following dimen-
sions: b=0.250, ¢ =0.840, L,=0.675, and L,=7.025 (all
dimensions in inches). The cavity had a resonant fre-
quency of 403.5 mc, 0.2 per cent higher than (13a) would
indicate, and an unloaded Q of 2280.

The temperature compensation of the cavity was
measured by placing it in a constant-temperature bath
and measuring its resonant frequency as a function of
temperature. The cavity temperature was varied from
—32°C to 53°C, and the temperature coefficient of the
cavity was found to be 2.62 parts/million/C® under-
compensation; 4.e., the cavity frequency was lowered
as the temperature was raised. This was a rather
surprising result since an uncompensated invar cav-
ity would be expected to exhibit a temperature coeffi-
cient of 1X107%/C° undercompensation. The high co-
efficient indicated one of two things: either 1) the invar
center conductor had a higher expansion coefficient
than advertised, or 2) some unexpected effect (such as
eccentricity of the center conductor, for example) was
present. Whatever the cause of the undercompensation,
the gap length had to be shortened to compensate
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for it. This was done in steps until a final gap length
of 0.376 inch produced a temperature coefficient of
0.25X107%/C° overcompensation, which was consid-
ered satisfactory. Fig. 9 shows the effects of the various
gap lengths on the compensation of the cavity.

Transient Response

During the temperature tests some data on the tran-
sient response of the cavity were obtained. The cavity
experienced a rise in temperature when it was inserted
into the temperature bath. The response of the cavity
showed two time constants, one associated with the
transfer of heat to the outer conductor and the other as-
sociated with the transfer of heat to the center conduc-
tor. These time constants were measured to be 1.1 min-
ute and 29 minutes, respectively. These results agree
fairly well with the response determined analytically.
As shown in Fig. 10, the cavity reached thermal equi-
librium in about 2 hours after it experienced a change in
temperature.

It should be mentioned that these figures for the
transient response are not those which would be experi-
enced in actual use. When employed in atmospheric
soundings, the rate of transfer of heat from the air to the
cavity would be very slow so that it would be expected
that the cavity would have essentially the same tem-
perature throughout the center post and the body at a
given time. Hence, the temperature compensation tech-
niques described in this paper would be effective.

A Graphical Method for Measuring Dielectric Con-

stants at Microwave Frequencies®

CHARLES B

Summary—This paper describes a graphical method for measur-
ing the real and imaginary parts of the dielectric constant /ey =€’ — je”
of materials at microwave frequencies. The method is based on the
network approach to dielectric measurements proposed by Oliner
and Altschuler in which the dielectric sample fills a section of trans-
mission line or waveguide. In contrast to their method, the network
representing the dielectric sample is analyzed in terms of the bilinear
transformation

_aI‘—l—b'
_cI‘—E—d’

14

ad — bec = 4.

The analysis proceeds from the geometric properties of the image
circle in the I' plane obtained by terminating the output line in a
calibrated sliding short.

* Manuscript received by the PGMTT, August 7, 1959; revised
manuscript received October 9, 1959. This work was sponsored by
the U. S. Army Signal Res. and Dev. Lab., Fort Monmouth, N. J.

1 The University of Michigan Res. Inst., Ann Arbor, Mich.

. SHARPE{}

The technique described retains the desirable features of the
network approach but avoids the necessity of measuring both scatter-
ing coefficients. As a result the procedure is more direct and, in the
case of the TEM configuration, leads to an entirely graphical solution
in which the complex dielectric constant can be read from a Smith
chart overlay.

INTRODUCTION
T HERE are many techniques for making dielectric

measurements at microwave frequencies.* One of
the more interesting methods proposed in recent
years is that due to Oliner and Altschuler,? in which the

T A. von Hippel, ed., “Dielectric Materials and Applications,”
J. Wiley and Sons, Inc., New York, N. Y., ch, 2; 1954.

2 A. Oliner and H. Altschuler, ¥Methods of measuring dielectric
constants based upon a microwave network viewpoint,” J. Appl.
Phys., vol. 26, pp. 214-219; February, 1955,
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dielectric sample filling a section of waveguide is repre-
sented by a two-port microwave network as illustrated
in Fig. 1. In their method the scattering matrix of the
network is determined at reference planes 75 and 75 by
Deschamps® procedure or, when the network can be re-
garded as lossless, by alternative so-called precision
techniques. The complex relative dielectric constant
¢/€o=¢"—je€'’ is then obtained from either

e/eo = (V/ V)2 (TEM modes) (1a)
or

_ T/ 70+ (p/A)?
1+ ()‘00/)‘0)2

where the wave admittance V in the dielectric relative
to the wave admittance of the empty guide ¥V, is given
in terms of the scattering coefficients by

(1 — §11)? — Spe?
V/'Vyoplm —mM8M ———————,
(F/%) (A + S1)? — Spa?

and Ao, and A, refer to the guide wavelength and the
cutoff wavelength, respectively, in the air-filled guide.

(H modes), (1b)

€/ €n
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Fig. 1.—Dielectric sample in a waveguide and its equivalent circuit.

Oliner and Altschuler point out that the introduction
of the network point of view to dielectric measurements
results in two major advantages over earlier methods.
First, it becomes possible to employ precision techniques
in the determination of the network parameters. For
example, in Deschamps’ geometrical method, the image
circle, representing the locus of points in the input re-
flection coefficient plane as a sliding short is moved in
the output waveguide, is determined by graphical
averaging. Therefore, the center of the image circle and
its radius, as well as quantities derived from them, can
be determined to a higher degree of precision than that
of a single data point. The second feature of the network
method which can be exploited to advantage in dielec-
tric measurements concerns the concept of invariance.

3 G. A. Deschamps, “Determination of reflection coefficients and
insertion loss of a waveguide junction,” J. Appl. Phys., vol. 24,
pp. 1046-1050; August, 1953.
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Briefly stated, invariance in the present case refers to
the method of microwave network representation or
measurement which calls for a minimum number of
physical length measurements. Thus, for the configura-
tion illustrated in Fig. 1 it is possible to take advantage
of the known symmetry of the network to reduce to one
the number of required distance measurements. The
single measurement required may be either the length of
the sample, ¢ (location invariant) or the location of the
one of the sample faces, Ty or T (length invariant). The
desirability of employing a distance invariant method
lies in the fact that errors arising from physical distance
measurements are generally greater than those resulting
from the electrical distance measurements, assuming
that corrections have been made for errors in the loca-
tion of the voltage minimum caused by spurious dis-
continuities 1f they exist.

The purpose of the present paper is to describe a
technique for measuring dielectric constants which re-
tains the desirable features of the network approach but
which can be accomplished more directly and with a
minimum of computation. In the case of the TEM con-
figuration, the dielectric constant can be obtained by a
purely graphical procedure in which the desired complex
constant is read directly from a Smith Chart.

THEORY

The dielectric-filled section of line or waveguide can
be represented at reference planes 75 and T» by the
(ABCD) circuit parameters which relate the input and
output voltages and currents, as defined in Fig. 1, by
the matrix equation

Vi A B[V,
Lo wlln) 2
I C DJILI,
where AD—B(C=1. If we take

7= Vi/I4, Zy = Vo/Is, c))

then a bilinear relationship is obtained between the im-
pedances Z; and Zs:

AZ,+ B

=~ 5
CZy+ D )

Z;
This transformation has often been used in analyzing
the properties of linear two-port networks. However, it
will be more convenient in the present case to consider
the network representing the dielectric sample in terms
of a bilinear transformation in the reflection coefficient

or I plane. Thus, if the input and output reflection co-
efficients are defined, respectively, by

Yo‘"‘Y1 Yo—Yz
A T YL V)
Yo+ T Yo+ ¥y
it can be shown that
ol b
UL LY )
6P2+d
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where
¢=A —BYy—C/Vo+ D,
A+ BYy— C/Vy — D,
¢= A~ BYy+ C/Vs— D,
d= A+ BYy+ C/V,+ D. (8)

o
It

Reciprocity is assured if ad —bc=4. If the network is
syminetrical, as in the present case, then b= —¢. Eq.
(7) is sometimes called the direct transformation to dis-
tinguish it from the inverse transformation

—dTy + b
Ty=— . 9)
cl’'y —a
The matrix composed of the (a¢bcd) parameters might
be termed the reflection matrix of the network. Al-
though the transformation (7) has been used by Mathis?
and also by Bolinder,® employing a different normaliza-
tion, it has not enjoyed widespread use as a tool in net-
work analysis. As would be expected, the reflection
matrix bears a close connection to the scattering matrix.
It can be shown that, in general,
i d}. (10)

G- [Sn b/d
Sa —c/d

[

Sas (ad — bc)/2d

An obvious application of (10) is suggested in the Ap-
pendix. The components of the reflection matrix trans-
form in a manner very similar to the manner in which
the scattering coefficients transform as a result of a shift
in reference planes. Referring to Fig. 1, the reflection
matrix at reference planes 77 and T is given by

l:a’ b’] [e‘f‘f’l 0 ][a b:l [e‘“’z 0 :I
¢ &1 Lo ewnlle d 0 enl
where ¢1=27l1/Nog, P2=27ls/N,, and the primed co-
efficients are defined by

(11)

’ 4
=a~;{—z (12)
4

Returning to the problem at hand the (4 BCD) matrix
of the dielectric-filled section at reference planes 7'y and
Tz iS

sinh yd
4 B cosh yd ———
= v
| | v (13)
C D Y sinhyd cosh~yd

from which (8) vields,

4 H. F. Mathis, “Some properties of image circles,” IRE TrANS.
ON MICROWAVE THEORY AND TECHNIQUES, vol. MTT-4, pp. 48-50;
January, 1956.

5 E. F. Bolinder, “Impedance and Power Transformations by the
Isometric Circle Method and Non-Euclidean Hyperbolic Geometry,
M.I.T. Res. Lab. of Electronics, Cambridge, Mass., Tech. Rept.
3125 June 14, 1957.
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a=2coshyd — (Y/Yy+ Yo/V) sinh ~d,
b= —¢c= — (Y/Yo -— YO/Y) sinh ’yd,
d=2coshyd + (V/¥o+ Yo/ V) sinhvd,  (14)

where v=a-j8 is the propagation constant in the di-
electric. A purely algebraic relation between ¥/¥, and
the (abed) parameters can be obtained by forming
a—d 1+(V/Vy)?
21— (V/Ty)?

Ty =

(1)

This expression is entirely equivalent to (2) involving
the scattering coefficients. The merit of the reflection
parameler representation lies in the simplicity of (15),
as well as in the facility it provides in the geometric in-
terpretation of the problem. Thus, it will be shown that
I'g can be determined through a series of simple geo-
metric constructions based on the image circle diagram.
The desired dielectric constant then follows from (la)
or (1b).

In the interest of generality we will proceed from the
initial assumption that reference planes 7" and 77 are
located arbitrarily with respect to the sample. Eq. (12)
is first rewritten in the form*

ac| T2 —bd [T +d ad — be
I’ = - — - |, (16)
| 7|2 —dd Lr + d][cc‘[ Tz - dd]
where the bar over a quantity designates the complex
conjugate and the primes have been omitted. One can
determine the center of the image circle and its radius
from (16) by inspection. Thus, when ]Pi =1, corre-
sponding to a reactive termination in the output wave-
guide, the first term in (16) will be a complex constant
and the magnitude of the second term will be a constant

for all values of reactance. Referring to Fig. 2, the center
of the image circle in the I'' plane is

Lo = M an
¢ — dd
and the radius is
l ¢ — dd[

There are three points in the reflection plane which
are of special interest. The iconocenter T'gr = S1:=50/d is
the map or image of I'=0 in the I'/ plane. There are a
number of geometric constructions which can be used to
obtain the iconocenter once the image circle, and its
center are known. %% All of these methods make use of

6 J. E. Storer, L. S. Sheingold, and S. Stein, “A simple graphical
analysis of a two-port waveguide junction,” Proc. IRE, vol. 41,
pp. 1004-1013; August, 1953.

7F. L. Wentworth and D. R. Barthel, “A simplified calibration of
two-port transmission line devices,” TRE TraNs. oN MICROWAVE
TrroRY AND TECHNIQUES, vol. MTT-4, pp. 173-175; July, 1956.

8 G. A. Deschamps, “A variant in the measurement of two-port
junctions,” IRE TrANS. ON MICROWAVE THEORY AND TECHNIQUES,
vol. MTT-5, pp. 159-161; April, 1957,
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Fig. 2—Construction of I'ps and I'ys, and determination
of reference angle 4.

a calibrated short behind the network, and all but the
last method referenced depend on a knowledge of the
wavelength in the output waveguide. The other two
points of interest in the reflection plane are I'pr=a/c
and I'r = —d/¢. These points have a special significance
in the theory of the bilinear transformation and can be
shown to mark the center of the isometric circles for the
direct and inverse transformations, respectively.®

GRAPHICAL ANALYSIS

Once T'o- and T'¢- are determined, I'p- can be readily
constructed by inverting I'o with respect to the image
circle as illustrated in Fig. 2. The proof of this statement
is contained in

(PD' - PC")(TO’ - TC’) = R, (19)

which follows from (17), (18), and the condition,
ad—bc=4. The construction of the point I'r follows in
an analogous way, although in contrast to the previous
case, the angle of I'rr will depend on the choice of the
output reference plane 7" It is convenient at this point
to locate 1" symmetrically with respect to 7”7 so that
1=1ls. Assuming for the moment that 7" has been so
located, the symmetry of the network representing the
dielectric then guarantees that b= —¢, and 't can be
determined graphically by constructing the reciprocal
of I'p-. This construction is also illustrated in Fig. 2. It
is interesting to note that I';s is also the inverse with re-
spect to the unit circle of I'¢= —¢/d, which is the map
in the output I" plane of the center of the image circle,
T'¢, via the inverse transformation (9).

® E. F. Bolinder, “Impedance and polarization-ratio transforma-
tions by a graphical method using the isometric circles,” IRE TRANS.
ONl MIC%%WAVE THEORY AND TECHNIQUES, vol. MTT-4, pp. 176-180;
July, 1956.
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The location of T is accomplished by noting that when
b= —c¢, the point 4 = —1 maps into 4’ at

1+ I'n
14T

The reference point 4/ on the image circle is determined
by the angle 84 =arg I'4-, which can be constructed from
T'p: and T'y, as shown in Fig. 2. Thus, in order to guar-
antee symmetry one locates T at that position of the
short in the output waveguide which establishes a volt-
age minimum at a distance /= (m—84/)No,/4m from T’
toward the generator in the input waveguide. It should
be noted that this procedure establishes 7" only to within
a multiple of half a wavelength. However, an approxi-
mate knowledge of the location of the sample suffices to
remove any ambiguity.

At this point it is desirable to distinguish between the
location invariant and the length invariant procedures.
In the location invariant procedure, 77 is located at an
arbitrary point in the input waveguide, and T is deter-
mined from symmetry considerations as described
above. The distance to the sample faces is calculated
from ly=L=(w—d)/2, where w and d are defined in
Fig. 1 and are assumed to be known. It then remains to
transform T'p and T’y to reference planes T and T; at
the sample faces. If I'p- and T'7» denote the isometric
centers relative to planes 77 and 7', and I'p and I'r the
corresponding quantities relative to planes 7 and Ty,
then it follows from (11) that

T'p = ¢**T'p, Ty = e 2%,

(20)

A’

21

where ¢ = (w—d)w/\;. The transformation of reference
planes and the construction of I'g, which is the average
of T and T, is apparent from Fig. 3. In the case of a
TEM structure, the desired dielectric constant can be
read directly from a Smith Chart overlay, in view of
(1a) and (15), by constructing the point

E/eo—' 1

Trp=—1/Tp = L0~
g /T e/eg + 1

(22)

This construction is also shown in Fig. 3.

In the length invariant procedure one makes the ini-
tial assumption that the front face of the sample can be
located accurately by physical means, thus making
7’ =Ti. This amounts to a trivial distance determina-
tion, which, in rectangular waveguides, can be readily ac-
complished by mounting the sample in a shorting switch.
Since the analysis proceeds from the assumption of sym-
metry, no distance measurement is required in the length
invariant case and the actual location of reference plane
T is of no interest. The points T'x and T’y are derived
directly from I'p- and I'1- as determined in Fig, 2 without
shifting reference planes.

When the loss tangent of the dielectric is relatively
small, the graphical method will give rather poor per-
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Fig. 3—Shift of reference planes and construction of T's.

centage accuracy in the determination of €'’. In this
case it is advisable to determine €'’ independently. This
can be done most simply by using the already deter-
mined image circle to calculate the intrinsic insertion
loss of the dielectric.!® The necessary formulas are listed
below for the convenience of the reader. If p=|T¢| is
the distance of the center of the image circle from the
origin of the reflection plane, it can be shown that

VAFR =5+ vzl'fm] )
V(e S ey eyl

Knowing ¢, the desired €'’ is then obtained from either

20d = ln[

2 <a——>\>2 /1 -+ (_‘271')2 (TEM modes) 24
"o ’ 1
€ o V =) modes), (24)

where A is the free-space wavelength or

ahog V1 4 Mag/N)2le — (og/Ao)?
7T 1 + O‘Oa/)\c)z

N

(H modes), (25)

1 K. Tomiyasu, “Intrinsic insertion loss of a mismatched net-
work,” IRE TraNs. ON MICROWAVE THEORY AND TECHNIOUES, vol.
MTT-3, pp. 40-44; January, 1955.

Sharpe: A Graphical Method for Measuring Dielectric Constants at Microwave Frequencies

157
if
O (26)
1 + ()\c/}\OQ)Z
APPENDIX

It is well known that repeated bilinear transforma-
tions can be expressed in terms of a matrix product.
Thus, if # linear networks are connected in cascade as
shown in Fig. 4, the reflection matrix of the combination
is given by

I:Z"_Ia 27=1p
2”416 2n~1d]

_I:dl bl][d2 bz:l [an b

C1 dl Ce dz Cn dn__.

) < ) L <'°) - n ( "n)_ Toun
o—]\a 4 cz Uz
|
I:i\ (: Z) {#FM.

Fig. 4—Cascade connection of linear, bilateral two-port networks.

o3

The factor of 2! guarantees that ad —bc=4if a.d;—bic;
=4,1=1,2,3, - - -, n The problem of determining the
scattering matrix of a cascade connection of networks is,
therefore, reduced to a systematic and relatively direct
procedure through the use of (27) and (10). In this ap-
plication the reflection matrix bears a close resemblance
to the transmission or 7" matrix,'! as might have been

anticipated from
2 —¢/2
o ]
—b/2 a/2

1 C. G. Montgomery, R. H, Dicke, and E. M. Purcell, “Principles
of Microwave Circuits,” M.I.T. Rad. Lab. Ser., McGraw-Hill Book
Co., Inc., New York, N. Y., vol. 8, p. 150; 1948.
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